- Euler-Last
- f <mech> ■ Euler's crippling load
German-english technical dictionary. 2013.
German-english technical dictionary. 2013.
Euler–Mascheroni constant — Euler s constant redirects here. For the base of the natural logarithm, e ≈ 2.718..., see e (mathematical constant). The area of the blue region is equal to the Euler–Mascheroni constant. List of numbers – Irrational and suspected irrational… … Wikipedia
Euler-Bernoulli beam equation — Euler Bernoulli beam theory, or just beam theory, is a simplification of the linear theory of elasticity which provides a means of calculating the load carrying and deflection characteristics of beams. It was first enunciated circa 1750, but was… … Wikipedia
Euler's sum of powers conjecture — Euler s conjecture is a disproved conjecture in mathematics related to Fermat s last theorem which was proposed by Leonhard Euler in 1769. It states that for all integers n and k greater than 1, if the sum of n k th powers of positive integers is … Wikipedia
Euler summation — is a summability method for convergent and divergent series. Given a series Σ a n , if its Euler transform converges to a sum, then that sum is called the Euler sum of the original series.Euler summation can be generalized into a family of… … Wikipedia
Euler equations (fluid dynamics) — In fluid dynamics, the Euler equations govern inviscid flow. They correspond to the Navier Stokes equations with zero viscosity and heat conduction terms. They are usually written in the conservation form shown below to emphasize that they… … Wikipedia
Euler's formula — This article is about Euler s formula in complex analysis. For Euler s formula in algebraic topology and polyhedral combinatorics see Euler characteristic. Part of a series of articles on The mathematical constant e … Wikipedia
Euler–Maclaurin formula — In mathematics, the Euler–Maclaurin formula provides a powerful connection between integrals (see calculus) and sums. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using… … Wikipedia
Euler on infinite series — Divergent seriesLeonhard Euler succinctly described a potential foundation for his treatment of divergent series in a calculus textbook published in 1755 [Euler (1755), Part 1, Chapter 3, #111, pp.78 79; English translation by Bromwich (p.322).… … Wikipedia
Euler — Leonhard Euler « Euler » redirige ici. Pour les autres significations, voir Euler (homonymie). Leonhard Euler … Wikipédia en Français
Euler's theorem (differential geometry) — In the mathematical field of differential geometry, Euler s theorem is a result on the curvature of curves on a surface. The theorem establishes the existence of principal curvatures and associated principal directions which give the directions… … Wikipedia
Euler angles — The Euler angles were developed by Leonhard Euler to describe the orientation of a rigid body (a body in which the relative position of all its points is constant) in 3 dimensional Euclidean space. To give an object a specific orientation it may… … Wikipedia